

 Navigation

 	
 index

 	
 next |

 	Goatlog 0.1 documentation

Goatlog, logging for continuous integration

Goatlog which is a rich logging mechanism intended to be primarilly used for
Continuous Integration. Goatlog extends the standard python logging library and
adds it some features so it is possible to send “rich” information (with
context attached). It is then possible to use the standard logging mechanism,
sending it custom messages, and goatlog will be able to format it in json.

The format has been primarly intended to be used within the python testing
infrastructure, but is not tied to it and can be used in a different context.
You may need to use goatlog if:

	You want to decode information stored on the python testing infrastructure

	You want a simple way to send information about execution of various tasks in
a continuous integration system

This documentation is split into different parts: one describing the concepts
involved with goatlog (kind of the specification of the json format) and one about
the methods and classes proposed by goatlib.

	Goatlog concepts
	Execution-content

	Context node

	Leaf node

	How to use goatlog
	Using it

	Goatlog API
	Log-manager

	Handlers

 Copyright 2011, FELD Boris - Alexis Métaireau - Pierre Yves-David - Logilab SA.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Goatlog 0.1 documentation

Goatlog concepts

Goatlog provides a format to report information about the execution of tasks, along
with information about the context of the tasks during the execution.

What is called “Execution” here is also called build in Buildbot and Jenkings. We
prefer to not call it so as it involves much more than just building things.

An execution contains three main things:

	Target: What is being tested?

	Environment: Data about the environment of this execution. It can contain the Operating
System, as well with other information about the environement the execution
is being run onto.

	Execution-content: Report on the execution.

Target and Environment are loosly defined and usually context specific.

Execution-content

The execution-content is structured as a tree: Contexts are opened and content
is added into this specific context.

Context node

The context node is a way to provide information about which part of the
execution produced some content. The most frequent context is a Step context,
which represents a step (an action) in the execution flow.

A FileTestContext, representing a test file could also be used as a specilized
context node for instance.

Context nodes can be embedded into other context nodes.

Here is the format of a context node:

	type:	The type of context. This might impact the kind of element allowed in the
context.

string in a valid subset

	id:	The identifier of the context, should be unique.

string

	status:	The status of the context. One of the following:

	missing

	skipped

	killed

	error

	failure

	nodata

	partial

	success

	start date:	When the context was open (if applicable).

	end date:	When the context was close (if applicable).

Step context

A context representing a step. Classically, first records will be arguments given to the step and the last one are content produced by step (stout, stderr or more precise data).

TODO: Following contexts requires more work.

File context

The file context

	file path:	path of the file (relative ?)

Test Group

	Name

Leaf node

The Leaf Node is the normal way of report informations.

LogMessage

The log message is the most common leaf node, normal “logging” api will produce some LogRecord. It contain:

	severity

	message

	category (optionnal)

	line (in File context)

Version Info

The version info is a leaf node used for giving informations about various components version. It contains:

	name

	version

Config Info

The config info is a leaf node used for report configuration passed to the execution. It contains:

	Variable

	Value

Test

The test record represents a test case, it’s format is:

	name:	The test name

	result:	Result of the test:

	success

	failure

	skipped

	error

	unexpected-success

	message:	Message associated to the test (if applicable).

	traceback:	Traceback of a possible exception (if applicable).

 Copyright 2011, FELD Boris - Alexis Métaireau - Pierre Yves-David - Logilab SA.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Goatlog 0.1 documentation

How to use goatlog

The log manager is the main class you will use in your program to send
information to whoever needs it (the master?):

import goatlog.log

log_manager = goatlog.log.LogManager("execution")

LogManager needs one parameter, the name of the logger to be created.

LogManager also accepts an arbitrary number of handlers which will be added
to the logger. Existing logging.handlers works, but goatlog provides more
useful handlers:

	RichLogHandler is an advanced log handler able to deal with contexts. This handler
produces nothing, but facilitates the creation of other rich log handler like
JsonHandler.

	JsonHandler, inherits from RichLogHandler and produce json.

For instance, if you want to produce both json and display log to stdout:

import sys
import logging

from goatlog.log import LogManager, JsonHandler

log_manager = LogManager("execution",
 logging.StreamHandler(sys.stdout), JsonHandler(open("log.json")))

Using it

In the next examples, the log_manager will be instantiated like this:

from goatlog.log import LogManager, JsonHandler

log = LogManager("execution", JsonHandler(open("log.json", "w")))

Simple logging

The Log manager api is very similar to the one in the :wlogging module, so you can
use it easily:

log.debug('Debug message')
log.info('Info message')
log.warning('Warning message')

It will produce this json file:

{
 "contents": [
 {
 "message": "Debug message",
 "type": "log.message",
 "severity": "DEBUG"
 },
 {
 "message": "Info message",
 "type": "log.message",
 "severity": "INFO"
 },
 {
 "message": "Warning message",
 "type": "log.message",
 "severity": "WARNING"
 }
]
}

Context logging

There are two ways to log contexts, one is using the python context manager (with statement) and the other one is more functional:

Context manager approach

Python provides a context manager (with statement), so this is a natural approach to use it with context logging:

with log.context("step1", "step"):
 log.info("Message before task execution")
 with log.context("task1", "task")
 log.info("Message during task execution")
 log.info("Message after task execution")

Functional approach

Now let’s see how to log some contexts with the functional approach:

log.open_context("step1", "step")
log.info("Message before task execution")
log.open_context("task1", "task")
log.info("Message during task execution")
log.close_context("task1", "task")
log.info("Message after task execution")
log.close_context("step1", "step")

With this approach, you need to close the context yourself, so be sure that you close the last opened context just as you do with xml markers.

Json log file

They both produce this json log file:

{
 "contents": [
 {
 "type": "step",
 "id": "step1",
 "contents": [
 {
 "message": "Message before task execution",
 "type": "log.message",
 "severity": "INFO"
 },
 {
 "type": "task",
 "id": "task1",
 "contents": [
 {
 "message": "Message during task execution",
 "type": "log.message",
 "severity": "INFO"
 }
]
 },
 {
 "message": "Message after task execution",
 "type": "log.message",
 "severity": "INFO"
 }
]
 }
]
}

When to use each approach?

First one is the recommended one, it’s easy to use and it will make your logging
statements more readable.

But sometimes, it is difficult to use the context manager approach, for instance
with a context opened in one method and closed in another one, you should use
the second approach in this case.

Finally, you have the choice between the two dependending on the situation, they
they do the same thing anyway.

More specific informations

LogManager also contains some additional methods to report more specific
informations, they are detailed in the Goatlog API page.

 Copyright 2011, FELD Boris - Alexis Métaireau - Pierre Yves-David - Logilab SA.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Goatlog 0.1 documentation

Goatlog API

Log-manager

LogManager is the main class managing all the logging mechanism.

Handlers

Goatlog provides some handlers than you could use.

JsonHandler

The JsonHandler is the handler which produce json file following rich format.

RichLogHandler

The RichLogHandler is the XXX TODO

 Copyright 2011, FELD Boris - Alexis Métaireau - Pierre Yves-David - Logilab SA.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Goatlog 0.1 documentation

Index

 Copyright 2011, FELD Boris - Alexis Métaireau - Pierre Yves-David - Logilab SA.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		Goatlog 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, FELD Boris - Alexis Métaireau - Pierre Yves-David - Logilab SA.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

